When the world gets closer.

We help you see farther.

Sign up to our expressly international daily newsletter.

Already a subscriber? Log in.

You've reach your limit of free articles.

Get unlimited access to Worldcrunch

You can cancel anytime.

SUBSCRIBERS BENEFITS

Ad-free experience NEW

Exclusive international news coverage

Access to Worldcrunch archives

Monthly Access

30-day free trial, then $2.90 per month.

Annual Access BEST VALUE

$19.90 per year, save $14.90 compared to monthly billing.save $14.90.

Subscribe to Worldcrunch
Green

In Argentina, A Visit To World's Highest Solar Energy Park

With loans and solar panels from China, the massive solar park has been opened a year and is already powering the surrounding areas. Now the Chinese supplier is pushing for an expansion.

photo of aerial view of black solar panels

960,000 solar panels have been installed at the Cauchari park

Silvia Naishtat

CAUCHARI — Driving across the border with Chile into the northwest Argentine department of Susques, you may spot what looks like a black mass in the distance. Arriving at a 4,000-meter altitude in the municipality of Cauchari, what comes into view instead is an assembly of 960,000 solar panels. It is the world's highest photovoltaic (PV) park, which is also the second biggest solar energy facility in Latin America, after Mexico's Aguascalientes plant.

Spread over 800 hectares in an arid landscape, the Cauchari park has been operating for a year, and has so far turned sunshine into 315 megawatts of electricity, enough to power the local provincial capital of Jujuy through the national grid.


It has also generated some $50 million for the province, which Governor Gerardo Morales has allocated to building 239 schools.

Abundant sunshine, low temperatures

The physicist Martín Albornoz says Cauchari, which means "link to the sun," is exposed to the best solar radiation anywhere. The area has 260 days of sunshine, with no smog and relatively low temperatures, which helps keep the panels in optimal conditions.

Its construction began with a loan of more than $331 million from China's Eximbank, which allowed the purchase of panels made in Shanghai. They arrived in Buenos Aires in 2,500 containers and were later trucked a considerable distance to the site in Cauchari . This was a titanic project that required 1,200 builders and 10-ton cranes, but will save some 780,000 tons of CO2 emissions a year.

It is now run by 60 technicians. Its panels, with a 25-year guarantee, follow the sun's path and are cleaned twice a year. The plant is expected to have a service life of 40 years. Its choice of location was based on power lines traced in the 1990s to export power to Chile, now fed by the park.

Chinese engineers working in an office at the Cauchari park

Xinhua/ZUMA

Chinese want to expand

The plant belongs to the public-sector firm Jemse (Jujuy Energía y Minería), created in 2011 by the province's then governor Eduardo Fellner. Jemse's president, Felipe Albornoz, says that once Chinese credits are repaid in 20 years, Cauchari will earn the province $600 million.

The Argentine Energy ministry must now decide on the park's proposed expansion. The Chinese would pay in $200 million, which will help install 400,000 additional panels and generate enough power for the entire province of Jujuy.

The park's CEO, Guillermo Hoerth, observes that state policies are key to turning Jujuy into a green province. "We must change the production model. The world is rapidly cutting fossil fuel emissions. This is a great opportunity," Hoerth says.

The province's energy chief, Mario Pizarro, says in turn that Susques and three other provincial districts are already self-sufficient with clean energy, and three other districts would soon follow.

You've reached your limit of free articles.

To read the full story, start your free trial today.

Get unlimited access. Cancel anytime.

Exclusive coverage from the world's top sources, in English for the first time.

Insights from the widest range of perspectives, languages and countries.

Green

Forest Networks? Revisiting The Science Of Trees And Funghi "Reaching Out"

A compelling story about how forest fungal networks communicate has garnered much public interest. Is any of it true?

Thomas Brail films the roots of a cut tree with his smartphone.

Arborist and conservationist Thomas Brail at a clearcutting near his hometown of Mazamet in the Tarn, France.

Melanie Jones, Jason Hoeksema, & Justine Karst

Over the past few years, a fascinating narrative about forests and fungi has captured the public imagination. It holds that the roots of neighboring trees can be connected by fungal filaments, forming massive underground networks that can span entire forests — a so-called wood-wide web. Through this web, the story goes, trees share carbon, water, and other nutrients, and even send chemical warnings of dangers such as insect attacks. The narrative — recounted in books, podcasts, TV series, documentaries, and news articles — has prompted some experts to rethink not only forest management but the relationships between self-interest and altruism in human society.

But is any of it true?

The three of us have studied forest fungi for our whole careers, and even we were surprised by some of the more extraordinary claims surfacing in the media about the wood-wide web. Thinking we had missed something, we thoroughly reviewed 26 field studies, including several of our own, that looked at the role fungal networks play in resource transfer in forests. What we found shows how easily confirmation bias, unchecked claims, and credulous news reporting can, over time, distort research findings beyond recognition. It should serve as a cautionary tale for scientists and journalists alike.

First, let’s be clear: Fungi do grow inside and on tree roots, forming a symbiosis called a mycorrhiza, or fungus-root. Mycorrhizae are essential for the normal growth of trees. Among other things, the fungi can take up from the soil, and transfer to the tree, nutrients that roots could not otherwise access. In return, fungi receive from the roots sugars they need to grow.

As fungal filaments spread out through forest soil, they will often, at least temporarily, physically connect the roots of two neighboring trees. The resulting system of interconnected tree roots is called a common mycorrhizal network, or CMN.

Keep reading...Show less

You've reached your limit of free articles.

To read the full story, start your free trial today.

Get unlimited access. Cancel anytime.

Exclusive coverage from the world's top sources, in English for the first time.

Insights from the widest range of perspectives, languages and countries.

Already a subscriber? Log in.

You've reach your limit of free articles.

Get unlimited access to Worldcrunch

You can cancel anytime.

SUBSCRIBERS BENEFITS

Ad-free experience NEW

Exclusive international news coverage

Access to Worldcrunch archives

Monthly Access

30-day free trial, then $2.90 per month.

Annual Access BEST VALUE

$19.90 per year, save $14.90 compared to monthly billing.save $14.90.

Subscribe to Worldcrunch

The latest