When the world gets closer.

We help you see farther.

Sign up to our expressly international daily newsletter.

Already a subscriber? Log in.

You've reach your limit of free articles.

Get unlimited access to Worldcrunch

You can cancel anytime.

SUBSCRIBERS BENEFITS

Ad-free experience NEW

Exclusive international news coverage

Access to Worldcrunch archives

Monthly Access

30-day free trial, then $2.90 per month.

Annual Access BEST VALUE

$19.90 per year, save $14.90 compared to monthly billing.save $14.90.

Subscribe to Worldcrunch
Germany

Being Smart About Solar Energy, Even Where The Sun Doesn't Shine

Solar darkness in Freiburg, Germany
Solar darkness in Freiburg, Germany
Andrea Hoferichter

BERLIN - Winegrower Barbara Banke of the Kendall-Jackson Wine Estates in California doesn’t just love the sun because it ripens grapes. The sunnier it is, the lower the winery’s electricity and gas bills are. And those savings are possible because of the large mirrors mounted on the football-field-sized tin roof of the winery’s production facility that for a year now have been concentrating sunlight on a narrow band of thin silicon solar cells.

These cells deliver electricity – but that’s not all. A tubular system on the back of the cells has a mixture of water and glycol flowing through that cools the silicon modules and heats a water cistern to a good 60° Celsius. The winery needs more than five million liters of hot water per year to clean the tanks in which the wine is stored. The hybrid installation’s photovoltaics also supply lighting and air conditioning. "We’re saving so much energy we expect to pay off the installation in three years," says Banke.

The hybrid installation using both photovoltaic and solar thermal technology comes from Cogenra in California, which has installed solar systems at the University of Arizona and Facebook’s new headquarters in Menlo Park among others.

The two-in-one solution is highly efficient. "Pure silicon photovoltaics use 15% to 20% of sunlight. The rest is lost heat,” product manager Mani Thothadri explains. "If on the other hand you collect and use the heat, then overall efficiency per surface goes up to 75%."

Israel’s Zenith Solar company also claims a similar rate of overall efficiency. It uses even bigger mirror systems and expensive but efficiently stacked solar cells that react to the different colors of sunlight. For three years, one of their installations has been providing a kibbutz in Israel with electricity and heat. Zenith has also announced that it will be providing the Chinese province of Gansu with two 10-megawatt installations.

The Pike Research marketing research institute in Boulder, Colorado, is predicting quick growth for solar hybrids. According to their estimates, by 2022, solar hybrids will be providing energy for 13.5 million households around the world.

Improving electrical output

But putting futuristic small-sized power stations like these on German roofs doesn’t make as much sense. Systems that concentrate sunlight with mirrors are mostly suitable in areas where there is a lot of direct sunlight. So researchers at the Institute for Solar Energy Research (ISFH) in Hameln, Lower Saxony, have been testing hybrid models that work like the Cogenra systems – except without the mirrors. Essentially, these are classic photovoltaic modules cooled by liquid circulated on the back.

However in places where there is relatively little sun, like Germany, using the lukewarm waste heat for heating or hot water is not an option with the ISFH system. "But the hybrid installation can, for example, help to warm the air in a public indoor pool, and our tests have also shown that it can provide extra heat for a geo-thermal heat pump," explains ISFH engineer Erik Bertram.

Using the hybrid with the pump can improve electrical output because photovoltaic cells work better when they remain cool, which is why the module they tested produced 5% more current than usual and the heat pump needed 10% less electricity. Bertram, however, readily admits that the hybrid isn’t yet at the point where it would make sense to mass-produce.

Researchers at the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Germany, prefer a different combination concept. They are developing a module that combines solar cells and heat absorbers in a well-insulated metal box that can produce a heating-compatible 60° Celsius even in Germany. On the solar side the module is covered by a coated sheet of glass that lets a lot of light in and no heat out.

This subtle heat trap can reduce electricity yield, since with every further degree this sinks by nearly half a percent. That is best observable during the summer months when the heating is off and no heat is drawn from the solar collector. "Generally the temperature in the modules then rises to between 40° Celsius and 60° Celsius," says ISE researcher Gerhard Stryi-Hipp. This means that efficiency sinks from a typical 15% at 25° Celsius to 12.5% – i.e. by a sixth. "That’s why in warm areas it’s worth considering adding a solar thermal air conditioning system that converts surplus heat," he says.

Security concerns raised by some – the electricity and the fluid are very close together in the hybrid modules – do not worry the ISE team because "while it is difficult to find materials that conduct heat well and insulate electric current reliably, it is doable," Stryi-Hipp says. His team mainly works with special synthetic foils, but is also testing lacquers and electrolyzed oxidized aluminum. The researchers aim to have their concept ready for serial production in three years.

"Buyers probably won’t save money on these solutions," says Stryi-Hipp. "But for the same money on the same roof surface they can produce more usable energy."

You've reached your limit of free articles.

To read the full story, start your free trial today.

Get unlimited access. Cancel anytime.

Exclusive coverage from the world's top sources, in English for the first time.

Insights from the widest range of perspectives, languages and countries.

Green

Forest Networks? Revisiting The Science Of Trees And Funghi "Reaching Out"

A compelling story about how forest fungal networks communicate has garnered much public interest. Is any of it true?

Thomas Brail films the roots of a cut tree with his smartphone.

Arborist and conservationist Thomas Brail at a clearcutting near his hometown of Mazamet in the Tarn, France.

Melanie Jones, Jason Hoeksema, & Justine Karst

Over the past few years, a fascinating narrative about forests and fungi has captured the public imagination. It holds that the roots of neighboring trees can be connected by fungal filaments, forming massive underground networks that can span entire forests — a so-called wood-wide web. Through this web, the story goes, trees share carbon, water, and other nutrients, and even send chemical warnings of dangers such as insect attacks. The narrative — recounted in books, podcasts, TV series, documentaries, and news articles — has prompted some experts to rethink not only forest management but the relationships between self-interest and altruism in human society.

But is any of it true?

The three of us have studied forest fungi for our whole careers, and even we were surprised by some of the more extraordinary claims surfacing in the media about the wood-wide web. Thinking we had missed something, we thoroughly reviewed 26 field studies, including several of our own, that looked at the role fungal networks play in resource transfer in forests. What we found shows how easily confirmation bias, unchecked claims, and credulous news reporting can, over time, distort research findings beyond recognition. It should serve as a cautionary tale for scientists and journalists alike.

First, let’s be clear: Fungi do grow inside and on tree roots, forming a symbiosis called a mycorrhiza, or fungus-root. Mycorrhizae are essential for the normal growth of trees. Among other things, the fungi can take up from the soil, and transfer to the tree, nutrients that roots could not otherwise access. In return, fungi receive from the roots sugars they need to grow.

As fungal filaments spread out through forest soil, they will often, at least temporarily, physically connect the roots of two neighboring trees. The resulting system of interconnected tree roots is called a common mycorrhizal network, or CMN.

Keep reading...Show less

You've reached your limit of free articles.

To read the full story, start your free trial today.

Get unlimited access. Cancel anytime.

Exclusive coverage from the world's top sources, in English for the first time.

Insights from the widest range of perspectives, languages and countries.

Already a subscriber? Log in.

You've reach your limit of free articles.

Get unlimited access to Worldcrunch

You can cancel anytime.

SUBSCRIBERS BENEFITS

Ad-free experience NEW

Exclusive international news coverage

Access to Worldcrunch archives

Monthly Access

30-day free trial, then $2.90 per month.

Annual Access BEST VALUE

$19.90 per year, save $14.90 compared to monthly billing.save $14.90.

Subscribe to Worldcrunch

The latest